Neuronal aging: learning from <em>C. elegans</em>
نویسندگان
چکیده
منابع مشابه
Neuronal aging: learning from C. elegans
The heterogeneity and multigenetic nature of nervous system aging make modeling of it a formidable task in mammalian species. The powerful genetics, simple anatomy and short life span of the nematode Caenorhabditis elegans offer unique advantages in unraveling the molecular genetic network that regulates the integrity of neuronal structures and functions during aging. In this review, we first s...
متن کاملLearning and Aging Related Changes in Intrinsic Neuronal Excitability
A goal of many laboratories that study aging is to find a key cellular change(s) that can be manipulated and restored to a young-like state, and thus, reverse the age-related cognitive deficits. We have chosen to focus our efforts on the alteration of intrinsic excitability (as reflected by the postburst afterhyperpolarization, AHP) during the learning process in hippocampal pyramidal neurons. ...
متن کاملBlueberries and neuronal aging.
As the population of people in the United States over the age of 65 years continues to increase, so too will the incidence of age-related pathologies, including decreases in cognitive and motor function. In cases of severe deficits in memory or motor function, hospitalization and/or custodial care would be a likely outcome. This means that unless some way is found to reduce these age-related de...
متن کاملSnapShot: Neuronal Regulation of Aging
Aging is characterized by loss of homeostasis across multiple tissues. The nervous system governs whole-body homeostasis by communicating external and internal signals to peripheral tissues. Here, we highlight neuronal mechanisms and downstream outputs that regulate aging and longevity. Targeting these neuronal pathways may be a novel strategy to promote healthy aging. To view this SnapShot, op...
متن کاملInferring and Learning from Neuronal Correspondences
We introduce and study methods for inferring and learning from correspondences among neurons. The approach enables alignment of data from distinct multiunit studies of nervous systems. We show that the methods for inferring correspondences combine data effectively from cross-animal studies to make joint inferences about behavioral decision making that are not possible with the data from a singl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Molecular Signaling
سال: 2013
ISSN: 1750-2187
DOI: 10.1186/1750-2187-8-14